Munc18-1 tuning of vesicle merger and fusion pore properties.

نویسندگان

  • Jernej Jorgacevski
  • Maja Potokar
  • Sonja Grilc
  • Marko Kreft
  • Wei Liu
  • Jeff W Barclay
  • Johanna Bückers
  • Rebecca Medda
  • Stefan W Hell
  • Vladimir Parpura
  • Robert D Burgoyne
  • Robert Zorec
چکیده

The release of hormones and neurotransmitters, mediated by regulated exocytosis, can be modified by regulation of the fusion pore. The fusion pore is considered stable and narrow initially, eventually leading to the complete merger of the vesicle and the plasma membranes. By using the high-resolution patch-clamp capacitance technique, we studied single vesicles and asked whether the Sec1/Munc18 proteins, interacting with the membrane fusion-mediating SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, affect fusion pore properties. Munc18-1 mutants were transfected into lactotrophs to affect the interaction of Munc18-1 with syntaxin1 (Synt1) (R39C), Rab3A (E466K), and Mints (P242S). Compared with wild-type, Munc18-1 E466K increased the frequency of the fusion event. The latter two mutants increased the fusion pore dwell-time. All the mutants stabilized narrow fusion pores and increased the amplitude of fusion events, likely via preferential fusion of larger vesicles, since overexpression of Munc18-1 R39C did not affect the average size of vesicles, as determined by stimulated emission depletion (STED) microscopy. Single-molecule atomic force microscopy experiments revealed that wild-type Munc18-1, but not Munc18-1 R39C, abrogates the interaction between synaptobrevin2 (Syb2) and Synt1 binary trans-complexes. However, neither form of Munc18-1 affected the interaction of Syb2 with the preformed binary cis-Synt1A-SNAP25B complexes. This indicates that Munc18-1 performs a proofing function by inhibiting tethering of Syb2-containing vesicles solely to Synt1 at the plasmalemma and favoring vesicular tethering to the preformed binary cis-complex of Synt1A-SNAP25B. The association of Munc18-1 with the ternary SNARE complex leads to tuning of fusion pores via multiple and converging mechanisms involving Munc18-1 interactions with Synt1A, Rab3A, and Mints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exocytotic pore in a SNARE

In 2013, the Nobel prize was awarded for discoveries related to the regulation of the cellular transport system (https://www.nobelprize.org/nobel_prizes/medicine/ laureates/2013/). In addition to studies by Südhof’s lab of signals that tell secretory vesicles when to release their cargo and the work of Schekman’s lab describing a set of genes required for vesicle transport, the Rothman’s lab de...

متن کامل

Control of fusion pore dynamics during exocytosis by Munc18.

Intracellular membrane fusion is mediated by the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. All vesicle transport steps also have an essential requirement for a member of the Sec1 protein family, including the neuronal Munc18-1 (also known as nSec1) in regulated exocytosis. Here, in adrenal chromaffin cells, we expressed a Munc18 mutant with reduced ...

متن کامل

Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming.

Exocytosis of secretory or synaptic vesicles is executed by a mechanism including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. Munc18-1 is a part of this fusion machinery, but its role is controversial because it is indispensable for fusion but also inhibits the assembly of purified SNAREs in vitro. This inhibition reflects the binding of Munc18-1 ...

متن کامل

Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming

Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is cr...

متن کامل

Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion.

Among SNARE proteins mediating synaptic vesicle fusion, syntaxin-1 uniquely includes an N-terminal peptide ('N-peptide') that binds to Munc18-1, and a large, conserved H(abc)-domain that also binds to Munc18-1. Previous in vitro studies suggested that the syntaxin-1 N-peptide is functionally important, whereas the syntaxin-1 H(abc)-domain is not, but limited information is available about the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 24  شماره 

صفحات  -

تاریخ انتشار 2011